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Chapter 1

Introduction

The construction industry is ripe for innovation. As global population skyrockets and urbanization ac-

celerates, the need for construction grows across all applications, and the democratization and safety of

construction becomes more important. Automation is perfectly poised to take on these challenges. Roboti-

cists often refer to the ‘three D’s’ that incentivize automation of a task: dirty, dull, and dangerous. All

three of these apply to construction, where difficult and tedious work results in 20% of workplace injuries in

the US, according to the US Department of Labor [1]. Automation could speed construction, lower costs,

and enable new types of construction. Furthermore, automation could enable construction in places where

humans cannot go: the sites of natural or nuclear disasters, extraterrestrial sites like the Moon and Mars,

or the bottom of the ocean.

The future of autonomous construction has strong potential, and many startup companies and media

outlets have capitalized on the excitement surrounding the field. They have dreamt up 3D-printed homes and

Figure 1.1: (left) Taken from [2]: an artistic rendering of a potential future of autonomous construction:
a system that uses multiple quad-rotors equipped with extrusion mechanisms to distributively 3D print a
bridge in unknown, uneven terrain. (right) Taken from [3] : A rendering of a futuristic 3D-printed home
design.
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Figure 1.2: (left) Image taken from [4]. A snapshot of Construction Robotics’ SAM100 bricklaying robot
at work. (right) Image credit: MIT Media Lab/Steven Keating: A robot that uses visual servoing and the
MIT Media Lab’s Print in Place method to 3D print a 14 meter diameter dome out of concrete.

communities, new architectural possibilities using 3D printing and robotic labor, and intricate autonomously

built structures (Figure 1.1).

The current state of the field lags behind these futuristic ideas. Most autonomous construction systems

at present focus on a single, tractable aspect of construction. A company called Construction Robotics has

developed a machine that lays a brick wall slightly faster than a human, while humans feed the machine

bricks and take care of complicated features like doorways or corners. Other companies have developed

methods to autonomously lay cement walls in wire meshes. Others focus on large-scale 3D printing: Steven

Keating at the MIT Media Lab 3D printed a 14 meter diameter dome (Figure 1.2).

Supporting these industry forays into autonomous construction is a rich body of research dedicated to

developing inexpensive, effective, and robust autonomous construction. This research explores a wide range

of applications: rigidly-defined templated assembly, bio-inspired collective construction, and even artistic

dry-stacking or fiber-wrapping tasks. These systems are varied in the purpose of the structures they build,

the manner in which they are controlled, and the materials with which they build. They approach a breadth

of challenging problems in the field, which we will discuss in depth in Chapter 2.

In this work, we contribute to the body of research by addressing autonomous construction in unstructured

environments. These environments are more difficult for robots, which thrive in structured, controlled areas

such as factories and enclosed workspaces. In order to address some of the most important applications

of autonomous construction, e.g. disaster response and extraterrestrial construction, the field has taken a

broad array of approaches, from building with amorphous materials to modular robot systems. We present

a distributed system that uses ‘smart’ building blocks to build adaptively.

Distributed systems are defined by the distribution of control authority, and sometimes sensing and com-

putation, among multiple agents. They are useful in unstructured environments because they can simplify

analysis and control, add redundancy, and enable parallelization. Instead of a centralized controller that

3



must understand the entire environment and plan around it, distribution allows agents to make decisions

more locally, based on information they gather from their surroundings and learn from communicating with

nearby agents. These simple actions are executed by agents individually, and can result in extremely complex

behavior that would be difficult to centrally coordinate. Furthermore, the redundancy of many agents makes

any individual failure less consequential, increasing robustness.

Some distributed systems use multiple robots to build with found materials or pre-fabricated building

blocks. Other distributed systems, called self-reconfigurable or modular robot systems, build with the robots

themselves. Other research, including ours, hybridizes the above approaches by constructing with smart

building blocks. These blocks are embedded with sensing and processing, and can communicate with other

blocks and with the robots that build the structure.

The use of smart building blocks in construction is appealing because they enable some of the same

capabilities as modular robot systems, without the high costs that these systems entail. In construction,

modular robots can identify the position they should take in the structure based on a set of local rules or a

global blueprint, and move to take this position. Through this mechanism, modular robot systems can create

rapidly adapting structures in highly uncertain environments, or precisely fulfill blueprints much faster than

a single assembly robot could.

In simple construction applications, structures can be well defined by a function: a wall keeps things

out, a pillar holds a load, and a bridge spans a gap. If a structure is defined by a function, modular robot

systems can distributively assess this function, and reshape themselves to continually perform the function

as the environment changes around them.

The drawback of modular robot systems is their cost. This cost comes largely from motors. Even at

scale, motors remain expensive, while the cost of the simple sensing and processing devices that construction

requires fall. In realistic construction applications, building blocks may need to be heavy and large. The

cost of making these building blocks into fully actuated robots could be astronomical.

Smart building blocks serve as a happy medium between self-reconfigurable robots and standard multi-

agent construction. They maintain some of the capabilities of modular robot systems, while decreasing costs

that come from actuation. Our goal in this work is to expand the capabilities of construction with smart

building blocks towards rapid adaptive construction in uncertain environments.

Previous work with smart building blocks builds structures pre-defined with a template, built by robots

that use data from the smart building blocks to determine where to place additional blocks in the structure.

This is an effective way to speed template-based construction, and it is the approach we build upon in this

paper. However, we argue that the capabilities that smart blocks provide when used in such a system have

not been fully exploited by previous research.
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In this work, we simulate a bipartite system composed of smart building blocks, and simple actuator

robots that build with them. We present a system that allows the smart building blocks to control construc-

tion: they use sensors and communication with neighboring blocks to gather local information, and apply

algorithms we developed to determine where new blocks should be placed to expand the structure. This

distributed, environment-based control system results in an emergent structure that adapts to changing and

unexpected environmental conditions.

In simulation, we apply this system to the proof-of-concept problem of building a floodwall.

The contributions of this work are:

1. A system architecture that gives smart building blocks control of the structure design

2. A distributed autonomous construction system that builds environmentally adaptive, emergent struc-

tures using only local information

3. A set of local rules that results in the successful construction of environmentally adaptive floodwalls

In Chapter 2, we give a broad overview of prior work in autonomous construction. In Chapter 3, we

describe the construction system we simulated, and present the results of four experiments designed to assess

the system’s capabilities of responsive, robust, scalable construction.
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Chapter 2

Background

2.1 Autonomous Construction

Autonomous construction is a broad field in which many disciplines intersect: computer vision, path planning,

control systems, and multi-agent systems, among others. We focus here on works that address methods and

systems for construction itself.

Works in autonomous construction can be well characterized by three factors:

1. Intent of construction task: Whether the structure is an extremely simple form of environmental

augmentation, a temporary function-based structure to perform one specific task, or a permanent

structure to be used as shelter or for another specific purpose

2. Capability of construction materials: Whether the system builds with found materials, passive,

regular building blocks, prepared building blocks that might have magnets or other assistive mecha-

nisms, smart building blocks, or modular robots capable of actuation

3. Control strategy: Whether the system is controlled distributively using local information, controlled

distributively with global information, or controlled in a centralized manner

First, we illustrate the research that has been conducted along each dimension above. In Section 2.2, we

will focus on research in emergent structures or using smart building blocks that is immediately relevant to

this work.
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2.1.1 Intent of Construction Task

The intent of the construction task informs the type of system that is best suited for the job. Construction

tasks range from rough augmentation of terrain, to building simple structures like dams or pillars, to building

highly complex, specially designed structures.

Environmental augmentation is the simplest form of autonomous construction. In environmental aug-

mentation, material is added to an environment to make it more suitable for a certain function. This could

involve making rough terrain smooth, so that a wheeled vehicle can traverse a rubble field; flattening a piece

of land to serve as a foundation; or building a ramp to climb a discontinuity in the environment.

This environmental augmentation work is often undertaken with very simple building materials – even

amorphous materials such as foam. In [5], Napp and Nagpal develop an algorithmic framework for creating

simple function-based structures with a remote-controlled robot that deposits expanding foam. In a two-

dimensional cross section of their environment, they define a set of rules that capture ‘navigability’ of a

terrain, based on robot parameters. Using this functional definition, they develop an algorithm to determine

where the robot should deposit material. They test their method in a variety of terrains, building expanding

foam ramps to make these terrains navigable.

In [6], Napp et al. extend this method to three dimensions, and implement it on an autonomous system,

which uses a similar set of function-based navigability rules to augment an environment with small bean

bags. They use a mobile robot with an arm to place these bags, augmenting the terrain to access previously

inaccessible locations. In [7], this approach is applied to a multi-robot team with multi-material construction:

each robot is specialized to build with a specific material, and the team must coordinate to effectively augment

the environment. This allows faster construction, as some robots can place large foam pieces while others

fill in the gaps with small bean bags.

Environmental augmentation is common in biological systems, and some research takes inspiration from

biology: [8] presents a system for robotic ‘blind bulldozing’ to clear a site of rubble, copying an approach

that ants use to clear a nesting site. Their robot system pushes rubble around using only force feedback,

and effectively clears the desired area.

Environmental augmentation can also take more sophisticated forms, using regular building blocks and

deliberate planning, rather than relying on simple environment-based rules. In [9], Tosun et al. present

a system that uses a camera and advanced modular robots called the SMORES-EP modules. The system

identifies two disconnected environmental features, such as two tables separated by a gap, and finds pre-

fabricated building blocks in the environment to make a traversible path between the two environmental

features.
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Figure 2.1: Illustrative examples of the variety of structure functions that the autonomous construction
field spans. Left is environmental augmentation from [5], center is single-function structures, a pillar from
[14], and right is a permanent truss structure imagined in [11].

At the other end of the construction task spectrum are permanent structures. These complex structures,

such as the buildings that make up a city, are intended to be used for an extended period, and may have

specific purposes that require specialized and precise features. For this reason, it is very difficult to define

these structures simply. Instead, a blueprint (or template, as it is called in autonomous construction), is

used to define the structure, and a centralized system uses one or more agents to construct this template.

Because of the nature of these structures, the systems that have been developed to build them are often

sophisticated and complex. In [10], Galloway et al. present the Factory Floor system, a bipartite system

that consists of floor-mounted robot arms and vertical lifting members. The system constructs a three

dimensional truss by layer: constructing a layer, lifting it up, and constructing the second layer beneath it,

resulting in complex truss structures from a template.

Along the same vein of truss construction, [11] presents the mechanical design of a truss system well-

suited to autonomous construction, and introduces designs for a robot that can traverse these trusses. [12]

works on the algorithmic side of this problem, developing an algorithm that robustly distributes construction

tasks for trusses among a multi-agent system using equal-mass partitioning.

Another work that builds towards the ideal of specialized permanent structures is [13]: Lindsey et al.

implement a system of multiple quadrotors capable of carrying small loads. The quadrotors work in tandem

to construct templated truss structures using specialized magnetic truss members.

In the spectrum of structure intent, simple structures that can be defined by their purpose lie between

environmental augmentation and complex structures. We call these structures single-function structures.

They are good candidates for local, distributed construction, because their function can be distributively

assessed and used to guide building without a template. Examples of these structures include walls and

dams, which hold things back; pillars, which hold things up; and bridges, which span a gap.

In [15], modular robots are used in simulation to build single-function structures. Christensen et al. use
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modular robots to generate simple structures that are based on functions - they create a pillar between two

horizontal surfaces and a bridge that spans a gap - but do not rely on the inherent function to define the

structures. Instead, they define a series of ‘attraction’ points in 3D space that the robots gravitate towards

stochastically, resulting in a template-like control scheme.

Other works take similar approaches to building simple function-based structures: in [14], Soleymani et

al. use a robot to build a wall out of bean bags. Instead of using the function-based definition of a wall, they

define another type of template, albeit one that is robust and adaptive: a probability distribution, according

to which building material is probabilistic deposited. They define a line of maximum probability, and center

a normal distribution on this line, resulting in a wall with a normal-distribution-shaped cross section.

These works successfully build simple function-based structures, but fail to take advantage of the natural

adaptability of a system that builds guided by a function. Instead of using the function that defines the

structure, they define flexible templates that secondarily result in fulfillment of the structure function. Due

to this reliance on templates, the systems cannot adapt to large changes in environmental conditions.

Some works in environmental augmentation use structure functions well ([5]), but beavers provide the

best example: they build their dams with the goal of stopping the flow of water. If they hear the sounds of

water trickling, they add more material. From this extremely simple function emerges a complex structure

that adapts continuously to fulfill its purpose, and can be built by many beavers at the same time with no

need for complex coordination [16].

In this work, we will take advantage of the natural adaptability of single-function structures to build like

beavers do. We will use our distributed system of smart blocks to evaluate local rules (like the flowing water

that beavers use) and determine where to build. In the literature, these concepts have not been applied to

smart block construction.

2.1.2 Capability of Construction Materials

The material that is used for construction is another important factor that varies widely across the field.

There is a rich diversity in building material: some works use materials that can immediately be gathered

from the environment (found material). These materials are often so basic as to be a hindrance to effective

construction, but are necessary in certain environments when more specialized building material is not

available. Normal, passive building material is much easier to work with: bricks, cinder blocks, and beams

are regularly shaped, and are the materials most often used in non-autonomous construction applications.

Further along this spectrum is specialized building material: these materials might be co-designed, designed to

work well with a particular robot ([17]), or have magnets to increase the area of acceptance and automatically
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connect components ([13]), but they do not contain sensors or processing power. More complex still are ‘smart

blocks’ or ‘stigmergic blocks’, which are embedded with sensors or processors to communicate with building

robots and other blocks, and which gather information from the surrounding environment. Finally, the most

complex and capable building blocks are modular robots. These combine the building blocks and the robots

that build the system into one: each block is a fully actuated robot that can sense and reason about its

environment.

Many works in autonomous construction make use of passive building materials. Amorphous building

materials such as foams, bean bags, and adhesives are used in applications where approximate methods

are implemented for highly robust structures, such as [5], [6], [7], and [14]. In [18], Napp et al. analyze

the variety of amorphous materials that are used for construction, characterizing their suitability for ramp

building and other tasks.

Rigid building materials are more widely used, for their strength and low cost. Simple cubic blocks are

the most common, as they naturally discretize 3D space. [19] uses simple cubic building blocks in slightly less

controlled terrain: it builds structures that adapt to unexpected features in the environment by incorporating

them into the given template or enclosing them in a wall.

Co-designed or prepared building blocks are used in many systems that push at the boundaries of complex

structure assembly in known environments. The TERMES system, developed in [17] and expanded in [20],

uses co-designed building blocks that its robots can easily manipulate and climb upon. [13], described above,

uses magnetic truss members with a large area of acceptance. [21] presents mechanical design of a set of

building robots and co-designed cubic blocks that allow the robots to traverse the structure freely, and build

in any direction.

Smart building blocks further increase structure capability; they enable distribution, storage, and col-

lection of data about the structure and environment. They are a middle ground between expensive but

capable modular robots, and unhelpful passive building blocks. In [22] and [23], Werfel et al. introduce and

validate the idea of smart blocks. They implement several types of enhanced building blocks, and compare

efficacy of building with these blocks. They find that smarter building blocks are effective, and result in up

to an order of magnitude faster construction. In this work, we focus on extending the adaptive capabilities

of construction systems that use smart blocks. In Section 2.2, we discuss the literature that uses smart

building blocks in greater detail.

Finally, the most complex building block is a robot itself: modular robot systems. These systems are

extremely capable, due to their distributed sensing and computation, and their parallelizability.

They are able to form structures that adapt to changing environmental conditions based on a defined

function for the structure: in [24], Bojinov et al. present a modular robot system capable of this adaptive
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Figure 2.2: Illustrative examples along the range of construction material capability. From left to right:
found material (sticks) from Devin Carroll; co-designed building blocks in the TERMES system from [17];
‘stigmergic’ smart building blocks from [26]; and the ATRON modular robot from [15].

behavior, and demonstrate a task where the modular robots form a table that redistributes its legs with

changing external forces on the tabletop.

These systems are also capable of autonomously recognizing damage to built structures, and repairing

it: [25] presents a modular system that recognizes and patches a hole using only local information.

2.1.3 Control Strategy

The final dimension along which we categorize autonomous construction systems is by control strategy. In

distributed systems with modular robots or smart building blocks, decentralized control is often used, where

individual agents distribute information or make decisions that result in global emergent behavior. In more

rigidly defined, controlled environments, which often involve building more difficult structures, centralized

control is often used.

The purest form of decentralized control is decentralization with no global knowledge or pre-planning:

this control strategy benefits from complete scalability, and extreme adaptiveness. It relies on local control

rules to result in emergent behaviors and structures. However, it is difficult to devise effective generalizable

local rules, and the complexity of built structures is limited.

Systems that build with this control strategy are presented in [24], [25], and [27].

Many systems decentralize control, but use a template shared by all of the agents to decide where to

build. This includes the systems presented in [17], [22], [23], [28], and [26].

Finally, systems that construct the most complex structures typically use centralized control and tem-

plates. [13] is one example of such a system, coordinating quadrotors to build complex structures. Single-

robot stationary systems are another class of construction systems that use centralized control and templates.

2.2 Emergent Structures and Smart Building Blocks

In this work, we present a system architecture that adaptively builds simple function-based structures using

smart building blocks. We aim for adaptiveness to changing environmental conditions, ability to respond to
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environmental changes and repair damage, and scalability.

Other research has approached different components of this problem. Works such as [5] and [7] use local

rules to build emergent environmental augmentation structures. However, these works rely upon centralized

systems to build and maintain a representation of the workspace, and to coordinate with the agents. This

limits scalability and the environments in which such a system can be applied.

Other works such as [24] and [27] use local rules that result in emergent structures - structures that are

not pre-defined, but which are ‘designed’ as they are built through a function-based set of rules. These works

use modular robots to form structures that are highly adaptive to changing environmental conditions. As

discussed in Section 2.1.2, modular robot systems can be prohibitively expensive at scale. In this work, our

goal is to achieve this highly adaptive behavior using less expensive smart building blocks.

In some work, smart building blocks have been used to construct template-based structures, but have

not been applied to adaptive systems. In [23], Werfel et al. extend their earlier work with stigmergic blocks,

validating the idea of using smart building blocks for autonomous construction. They build the same two

dimensional structure with three types of building blocks: inert blocks, writeable blocks, and smart blocks.

The inert blocks are simple passive building materials, the writeable blocks can hold data from passing

building robots, and the smart blocks can actively communicate this information between building blocks

and to the building robots. They found that by increasing complexity of building block, they could decrease

building time by almost an order of magnitude.

In [28], Werfel et al. extended this approach to three dimensions, and developed in detail a method for

propagating signals across the structure surface to tell the building robots where to go. We use this signal

propagation method, called gradient propagation, in our system. We detail the method in Section 3.2.1.

In these works, Werfel and his colleagues find effective ways to construct with smart building blocks,

but do not leverage the distributed sensing and processing fully: they do not make the system adaptive to

environmental factors, instead building pre-defined templates. Furthermore, in [23] and [28], the authors use

some non-local information in their system to make guarantees about buildability of a structure.

In this work, we present a system that is based on the system architecture of [28], with several key

differences. Instead of relying on pre-defined templates, we use smart building blocks to control the structure

design. This enables far greater responsiveness. We also use only local information, eliminating the small

amounts of non-local information required in [28]. This increases the scalability of our system. Through

these changes, we present a system that is better suited for construction in unknown and unstructured

environments.
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Chapter 3

Research

3.1 Research Statement

Our goal in this research is to determine whether smart building blocks can be used to build adaptive

structures in unstructured environments.

In simulation, we develop a system architecture of actuator robots and smart building blocks that is

capable of adaptive construction. The building blocks control construction using local rules, resulting in

emergent structures that perform simple functions. We demonstrate that this system is adaptive to different

environments, is capable of reacting to damage and changes in the environment, and is scalable.

In this section, we describe the system architecture and our simulation. We lay out the algorithms used

by the smart building blocks to build emergent structures in Section 3.3. We demonstrate our system’s

adaptiveness, responsiveness, and scalability with four experiments in Section 3.4.

We choose a floodwall as a test structure for our system. The use cases for a floodwall align well with

the advantages of an adaptive system that uses smart blocks. Floodwalls are:

• Built in dangerous and unstructured environments (disaster areas)

• Simple structures that can be easily defined by their function (keep water out)

• Temporary structures that must respond to changing environmental conditions (e.g. rising water levels)

• Highly susceptible to damage and failure

• Large scale

A floodwall is an effective test case, but it is far from the only application of this system. We do not

focus on the specific physical implementation of our system on a floodwall, choosing instead to emphasize
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Figure 3.1: From [29]: images of real floodwalls. The structure on the left took 419.8 man-hours to build.
The structure on the right requires heavy machinery and human operation in a dangerous flood environment.

the fundamental questions of system functionality. Implementing this system in a physical prototype is not

trivial, but it is not the focus of this work.

3.2 System Overview

We present a system composed of two parts:

1. Smart building blocks:

These cubic building blocks are equipped with simple sensors and processors. They compose the

structure itself, and dictate where blocks are added to the structure using local rules. They propagate

gradients across the surface of the structure to guide the actuator robots.

2. Actuator robots:

These robots carry building blocks across the surface of the structure, and deposit them on the structure

according to the directions of the building blocks. They navigate to valid deposition sites by following

the gradients propagated by the building blocks.

This section describes how each part of the system functions, and lays out the assumptions about the

capabilities and limitations of each system component.

3.2.1 Smart Building Blocks

The smart building blocks form the structure itself, distributively control the expansion of the structure,

and propagate gradients across its surface that guide actuation robots to deposition points.

We make the following assumptions about the building blocks:

1. They are cubic in shape
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Figure 3.2: Flowchart showing the actions of the smart block in the system

2. They can rigidly connect on all 6 faces to other building blocks, and can communicate through these

connections

3. They can connect to actuator robots on all 6 faces, and can communicate with the actuator robots

through these connections

4. They are equipped with proximity sensors that can sense if adjacent positions are occupied (by blocks

or existing parts of the environment)

5. They are equipped with water sensors that can determine the presence of water on all 6 faces

6. They are equipped with hydrostatic pressure sensors on all 6 faces

7. They have a processing unit capable of storing and processing a few small integers (on the scale of n,

the number of blocks in the structure)

The smart building blocks have two functions in the system: distributive control of structure expansion

through local rules, and communication of gradients across the structure surface to guide actuator robots to

valid deposition sites.

Distributed Control:

Each building block is equipped with simple sensors that allow it to gather information about its immediate

surroundings, and a processor that enables it to synthesize this information. Using a predefined algorithm

relying on this sensor data and information collected from neighboring blocks, each block determines which
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Figure 3.3: Steps in the process of a gradient propagating across the structure from a source valid deposition
site. At t = 0, a valid deposition site is designated at the top right corner of the structure. The gradient
value is represented by the color, with blue = 1 and yellow > 10. At each time step, the surrounding blocks
check their neighbors for a smaller gradient value and increment this value. At t = 3, the gradient has
propagated a distance of 3 blocks, and at t = 5, it has propagated 5 blocks in all directions.

of its 6 faces are valid deposition points for additional blocks. The algorithms that are used to make this

decision are described in Section 3.3. After determining the valid deposition points that neighbor each

building block, it communicates this information with neighboring blocks through gradient propagation.

Gradient Propagation:

The blocks propagate gradients along their surface to signal the shortest path to a deposition point to the

actuator robots. This mechanism allows the actuator robots to move directly to deposition points, rather

than performing a random walk or systematic search across the structure surface, or relying on a complete

state representation of the system and localizing within it. This idea was originally proposed in [22] and

extended to 3D blocks in [28].

In broad terms, the building blocks propagate gradients through the following steps:

1. Each block determines whether it borders a valid deposition site

2. If the block borders a deposition site, it sets the gradient value at the bordering face to 1

3. If the block does not border a deposition site, it updates gradient values by incrementing the lowest

gradient value from its neighboring blocks

In practice, the implementation of this method is slightly more complex: each block face on the surface

of the structure belongs to a building block, but must act as an individual unit. If the face borders a valid
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deposition site, it receives gradient value = 1. If the face does not neighbor a deposition site, the block

determines the set of faces that are adjacent to the face, identifies the smallest gradient value from this set,

and increments this value by 1. This is the final assigned value.

But these gradient values are not directly useful to an actuator robot. When attached to a specific face,

the robot only sees one gradient value, and can not determine which direction to move. For this reason, each

block also stores the direction from which each face ‘received’ its gradient: North, East, South, West, Up, or

Down. This results in a vector field across the structure surface, indicating gradient direction. An actuator

robot uses these vectors to identify the direction it should move, and follows these directions until it reaches

a face with gradient 1, where it knows to deposit a block.

These two mechanisms, distributed control via local rules and gradient propagation, together enable the

blocks to efficiently guide construction, while using only local sensor readings and communication.

3.2.2 Actuator Robots

In a self-reconfigurable robot system, each robot is capable of a full range of motion. In order to decrease

the prohibitive cost of such a system, our system removes this actuation authority from the building blocks,

and concentrates it in a relatively small number of actuator robots. The actuator robots are responsible for

transporting the building blocks from the depot to the deposition points, following the directions commu-

nicated by the building blocks. They are equipped with sensors, processors, and actuators that enable this

task. We assume that each actuator robot:

1. Can hold one block at a time

2. Can move along the surface of the structure freely in all three dimensions, by attaching to one block

at a time

3. Can deposit a block in any valid position adjacent to the robot

4. Can store and process a few small integers (on the scale of n)

5. Can communicate with the block to which it is attached

6. Given a direction of movement (North, East, South, West, Up, or Down) from a block, can determine

whether it will need to move around a corner or to an adjacent block, and whether this movement is

possible

7. In present implementation, we do not address the navigation of the actuator robot back to the depot

from a point in the structure. This can easily be achieved with a second gradient propagated from the
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Figure 3.4: The finite state machine under which each actuator robot operates

depot, but for now we assume the actuator robot is capable of this navigation independently.

The actuator robots function under a finite state machine, depicted in Figure 3.4. An actuator robot is

initialized at the depot, where it picks up a block and begins following the gradient on the structure surface.

The robot follows the gradient until it reaches a block with gradient value 1: a valid deposition point. It

then moves to an adjacent position, and places the block at the deposition point. It switches its state, and

returns to the depot, repeating until there are no valid deposition points remaining.

3.2.3 System Initialization and Other Assumptions

The system is initialized by a single ‘seed’ block. This block is placed in the environment by outside forces,

and for the purpose of this investigation, is identical to all other building blocks. The structure grows from

this seed block based on local rules.

We assume the depot is an effectively infinite supply of smart building blocks, and we locate the depot

on the surface of the structure at the x- and y-positions of the seed block.

Finally, the space in which the system functions is discretized into a 6-connected cubic grid. All compu-

tation and movement takes place in a discrete manner within this grid.

3.3 Algorithms

The algorithms presented in this section are used by the smart building blocks to determine which neigh-

boring positions are valid deposition points. The structure emerges from these collective decisions and the
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Figure 3.5: The structure that the system builds with each algorithm in an identical environment. Top
left is the template algorithm, top right is the fixed-width algorithm, bottom left is the blind algorithm, and
bottom right is the hydrostatic algorithm.

environmental factors that inform them. In this sense, the algorithms determine the shape and function of

the final structure. The shapes that emerge from each algorithm given identical inputs are shown in Figure

3.5.

In this section, we describe the four algorithms that we tested. Each of the algorithms takes as input

the readings from sensors and data about surrounding blocks that is collected through local communication.

The algorithms output the directions of valid deposition sites. The smart building block uses this directional

information to propagate the correct gradients, and to indicate to the actuator robot where to deposit new

building material.

The algorithms vary in the complexity of their inputs and logic, and in the shape of the structures that

emerge from them. The inputs and capabilities of each algorithm are summarized in Table 3.1. We present

them in order of increasing complexity and capability.

3.3.1 Template

The template, shown in Algorithm 1, is the simplest possible algorithm to distributively control construction.

It is not an adaptive algorithm, and it does not rely upon sensor inputs. Instead, it is a blueprint that is

decided by a human operator, based on knowledge of the site in which the system is to be deployed.

Templates are used in [22] and [28] to effectively build structures in a system such as ours. The drawback
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Table 3.1: Summary of inputs and capabilities of the four algorithms discussed in this section.

of this method is that it is not adaptive to changing environmental conditions: perfect knowledge of the

environment is required beforehand, and this severely limits the applications of autonomous construction. In

the floodwall scenario we investigate here, a template-based construction strategy would require knowledge

of the exact extent of future flooding. This knowledge is not typically available. A template would also fail

in the case of unexpected obstacles in the construction area or significantly uneven ground terrain.

However, the template requires very little communication between blocks. It only requires that a block

receives from its neighbors its position in the discretized space, and knowledge of where its neighbors are.

From here, it simply consults a set of stored parameters that define the template itself, and checks its position

against these parameters.

We use the template algorithm as a ground truth for comparison of our other, adaptive algorithms. For

autonomous construction with smart building blocks, it is the state of the art. We aim to improve upon

the capabilities of a system that uses this algorithm, while paying only marginal cost in number of messages

sent.

The template algorithm, shown in Algorithm 1, uses the user-provided template to check whether a

given position is valid. Each block, upon placement, receives its position in some shared reference frame

from its neighboring blocks. It is pre-loaded with the parameters that define the template. In the case of

the floodwall, these parameters are the maximum and minimum extents of the floodwall in each dimension

(six parameters). The algorithm iterates through six directions: North, East, West, South, Up, and Down,

and finds the neighboring position for each direction. It checks this neighboring position for validity (is it
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occupied, and is it within the bounds of the ‘world’) and checks to see whether it is an occupied position

within the template. If both of these are true, the position is marked as a valid deposition site, and added

to the list of attachments.

Algorithm 1: Template algorithm

Result: Valid attachment sites for a block
attachments ← [];
foreach face direction do

neighbor ← GetNeighbor(face direction);
within template ← CheckTemplate(neighbor);
is valid ← CheckValidity(neighbor);
if within template & is valid then

attachments ← [attachments,neighbor];
end

end

3.3.2 Blind Algorithm

The ‘blind’ algorithm, shown in Algorithm 2, is the simplest set of rules that adaptively builds a structure

to contain the water. The system takes only a direction to contain the water (containment direction) as

user-provided input, and builds in every direction except for this user-specified direction. We refer to the

algorithm as ‘blind’ because it uses only water sensor data, and builds blindly wherever there is water. This

results in a structure that expands uniformly from the depot, as the actuator robot always fills the closest

valid deposition point, and thus is biased towards the depot. This can be seen in Figure 3.5.3, a sample

structure constructed by this blind adaptive algorithm. The depot in this case is located in the near left

corner of the structure, and so the actuator robot deposits the blocks nearest to this corner first.

In order to deal with the direction input from the user, the blind algorithm (and the two algorithms

presented later in this section) makes use of special block-to-block communication. Each building block

has a binary ‘exterior’ property, which indicates whether the building block is located on the surface of

the structure that will be directly containing the water. The exterior property is by default false. The

seed module that initiates construction is on the exterior, and passes a true exterior signal in all directions

perpendicular to the containment direction. In this way, all blocks in the structure know if they are exterior

or interior blocks from the binary signal, and in this sense, the blocks are separated into two groups that the

algorithm treats slightly differently.

Unlike the template algorithm presented above, the blind algorithm is adaptive to changing environmental

conditions: if the water level rises, the structure will grow to contain it. If the channel widens, the structure

will grow to fill it.
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The blind algorithm is detailed in Algorithm 2. If the block is an exterior block (on the surface that will

contain the water), it iterates through all directions (North, East, South, West, up, down) and checks if:

1. there is water in the direction, 2. the position in the direction is a valid one (i.e. unoccupied), 3. the

direction is not the containment direction. If all three of these checks are positive, the block designates the

position in the direction a valid deposition site.

If the block is interior, it performs the same iteration, but it does not check if the direction is the same

as the containment direction. Since it is on the inside, it does not need to ensure that it does not build into

the water containment area.

Algorithm 2: Blind adaptive algorithm

Result: Valid attachment sites for a block
attachments ← [];
if block type = exterior then

foreach face direction do
neighbor ← GetNeighbor(face direction);
is wet ← water sensors;
is valid ← CheckValidity(neighbor);
if face direction 6= out & is wet & is valid then

attachments ← [attachments,neighbor];
end

end

else
foreach face direction do

neighbor ← GetNeighbor(face direction);
is wet ← water sensors;
is valid ← CheckValidity(neighbor);
if is wet & is valid then

attachments ← [attachments,neighbor];
end

end

end

This algorithm will only stop building when all non-exterior surfaces are dry. This guarantees that, given

an infinite supply of building blocks, the system will eventually contain the water. However, the structure is,

by inspection, larger than necessary and asymmetrical, indicating a sub-optimal distribution of construction

material.

It also means that we must make the assumption that water behind the wall will drain when the water

in front of the wall is contained. If it is not drained, the wall will continue building backwards, which is not

a desired behavior.

22



3.3.3 Fixed-Width Algorithm

The fixed-width algorithm takes a user-specified width, and builds adaptively, maintaining this width. An

example of a structure built using this algorithm is shown in Figure 3.5.3. The structure pictured was built

with a specified width of 2 units.

Like the blind algorithm, the fixed-width algorithm also makes use of a special block-type signal, that

allows blocks to determine whether they are on the exterior or interior of the structure through only local

communication.

The fixed-width algorithm uses an additional specialized signal to guarantee that it will maintain the

desired structure width. This signal is similar to the gradient that is propagated across the structure surface:

it counts width, and is incremented by every block as it passes the gradient on. This gradient only moves

in the opposite direction from the specified containment direction. In this manner, each block is able to

determine its depth from the exterior of the structure through only local communication.

Using this depth value, water sensor values, and local communication with neighboring blocks, the fixed-

width algorithm determines the neighboring positions that are valid for block deposition.

The fixed-width algorithm, detailed in Algorithm 3, functions very similarly to the blind deposition

algorithm. If a block is exterior, it iterates through all 6 directions, checking the water sensor values and

the validity of the position in each direction. If the sensor readings and validity check are positive, and the

direction is not the specified containment direction, the algorithm determines the position to be valid.

If the block is interior, the algorithm takes into account the structure width signal. For the direction

opposite the specified containment direction, the algorithm only designates the adjacent site a valid deposition

site if the width at the block is less than the specified goal width. For all other directions, the algorithm

simply checks if the position is valid. Since the algorithm does not use the water sensors for interior blocks,

it prohibits building upward by interior blocks. This ensures that the interior blocks only build as high as

the exterior wall.

This algorithm guarantees construction of a wall that will contain water in the given containment direc-

tion, and construct to the specified wall width. Like the blind algorithm, it is adaptive to changing water

levels. However, requiring the user to input a desired width assumes that the user has knowledge of the nec-

essary width to make a stable wall. If the user only expects small water levels and inputs a correspondingly

small width, but then unexpectedly high water levels result in a tall and very skinny wall, the structure is

likely to fail. To avoid this, we make use of another set of sensors in the hydrostatic algorithm.
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Algorithm 3: Fixed-width adaptive algorithm

Result: Valid attachment sites for a block
attachments ← [];
if block type = exterior then

foreach face direction do
neighbor ← GetNeighbor(face direction);
is wet ← water sensors;
is valid ← CheckValidity(neighbor);
if face direction 6= out & is wet & is valid then

attachments ← [attachments,neighbor];
end

end

else
foreach face direction do

neighbor ← GetNeighbor(face direction);
ok width ← (face direction 6= GetOppositeDirection(out)) OR (GetNeighborWidth(out)+1
< goalwidth);

is valid ← CheckValidity(neighbor);
if ok width & is valid & face direction 6= up then

attachments ← [attachments,neighbor];
end

end

end

3.3.4 Hydrostatic Algorithm

The hydrostatic algorithm is the most complex, and uses the most sensors. However, it requires no knowledge

from the user, making it more robust and adaptive than the fixed-width algorithm. It also builds a smaller

structure to fulfill the same purpose as the blind algorithm, making it more efficient.

The hydrostatic algorithm accomplishes this by making use of water sensors, hydrostatic pressure sensors,

and local communication with neighboring blocks. It requires only a containment direction from the user.

It uses the same specialized local communication as the blind and fixed-width algorithms to propagate

information about interior vs. exterior blocks.

The hydrostatic algorithm uses a similar method to the fixed-width algorithm to propagate information

about width of the structure. The exterior blocks read the hydrostatic pressure sensors, and determine the

appropriate width from this information. In our simulation, we supply these hydrostatic pressure sensors

with values using Equation 3.1. The desired width is calculated from this pressure reading by simple linear

scaling in Equation 3.2, with α = 1
ρg , β = 0. The exterior blocks then propagate a gradient in the opposite

direction of the specified containment direction, initializing the gradient at the desired width from Equation

3.2, and decrementing the gradient as it is passed from block to block. This means that the interior blocks

need not use information about the actual hydrostatic force; instead, they simply check if the gradient

message they receive is greater than zero.
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P = ρgh (3.1)

Wdes = αP + β (3.2)

The algorithm is detailed in Algorithm 4. For exterior blocks, the algorithm is identical to the blind

algorithm: for each direction, if the indicated position is valid, the water sensors give positive readings, and

the direction is not the containment direction, the algorithm designates the site a valid attachment site.

The interior blocks make use of the hydrostatic width gradient that is propagated from the exterior

blocks. The algorithm iterates through all 6 directions, and checks the validity of the position and that the

hydrostatic width gradient is greater than zero. If both of these checks are positive, the algorithm designates

the site in the given direction a valid deposition site.

Algorithm 4: Hydrostatic adaptive algorithm

Result: Valid attachment sites for a block
attachments ← [];
if block type = exterior then

foreach face direction do
neighbor ← GetNeighbor(face direction);
is wet ← water sensors;
is valid ← CheckValidity(neighbor);
if face direction 6= out & is wet & is valid then

attachments ← [attachments,neighbor];
end

end

else
foreach face direction do

neighbor ← GetNeighbor(face direction);
ok width ← GetNeighborHydroWidth(out) > 0;
is valid ← CheckValidity(neighbor);
if ok width & is valid & face direction 6= up then

attachments ← [attachments,neighbor];
end

end

end

This algorithm results in a staircase or right-triangle shape, as seen in Figure 3.5.4. Hydrostatic pressure

increases with water depth, so increasing water height causes an increase in not only the height of the

structure, but also the width. This results in a structure that is continually stable regardless of environmental

factors.
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Table 3.2: Experiment 1: Adaptive Behavior with Hydrostatic Algorithm

Figure
3.6.X

channel
width

water
height

seed
position

number
of blocks

time
steps

1 4 3 [14,2,1] 35 306
2 3 6 [16,1,1] 88 1,108
3 6 5 [14,2,1] 112 1,463
4 10 4 [10,8,1] 121 1,633
5 20 2 [12,10,1] 83 1,296
6 12 10 [14,6,1] 728 15,980

3.4 Experiments and Results

There are three key system capabilities that we aim to show in order to demonstrate adaptive construction

in uncertain environments:

1. Adaptive behavior that generates effective structures in a variety of environments, using the same

inputs

2. Automatic response to damage or to changing environmental factors

3. Scalability in construction time and intra-structure communications that supports almost limitless

scaling of this system

3.4.1 Adaptive Behavior

In Experiment 1, we show that our system is capable of adapting to a variety of environments. We test this

capability by choosing an algorithm from Section 3.3, and deploying our system using this algorithm in a

variety of different environments. For this experiment, we use the hydrostatic algorithm - Algorithm 4 - and

deploy the system in a channel-like setting, where a desired structure builds past the height of the water,

and builds across the channel, touching each wall. Water behind the wall is drained ‘downstream’ in this

scenario. We varied the width of the channel, the height of the water, and the position of the seed block,

and documented the results in Table 3.2 and Figure 3.6.

3.4.2 Damage and Environment Response

To demonstrate the system’s ability to quickly respond to unexpected damage to the structure, or to unex-

pected changes in the environment, we designed two experiments.

In Experiment 2, which is depicted in Figure 3.7, the system uses the hydrostatic algorithm (Algorithm

4) to build a floodwall in a channel setting with channel width 8 and water height 4. At timestep 1200

8 blocks (a 2x2x2 block cube) are instantaneously removed from the structure (Figure 3.7.2) by external
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Figure 3.6: Resulting structures from Experiment 1, testing adaptation with the hydrostatic algorithm.
The sub-figure numbers correspond to each of the test cases in Table 3.2.

forces - neither the smart blocks nor the actuator robot are directly informed of this damage; they must

autonomously discover it. The system successfully patches the hole and continues to build the structure.

In Figure 3.7.1, the system has almost completed the structure. In 3.7.2, the 8 blocks mentioned above

are removed without directly informing the system. In 3.7.3, after one timestep, the smart building blocks

recognize that there is damage in the structure from their updated sensor readings. This can be seen by the

color change of the blocks surrounding the hole, signifying the gradient of these blocks. The yellow color in

3.7.2 indicates the blocks have a high gradient, and are not near a valid deposition point. The dark blue

color of the same blocks in 3.7.3 indicates that they are near a valid deposition point (the hole) and have

begun propagating the gradient. In 3.7.3, water also begins reentering the previously drained area behind

the wall through the hole. Water pools behind the wall in 3.7.4 and 3.7.5, as the actuator robot begins

fulfilling the block requests, and patching the hole. In 3.7.6, the front layer of the hole is fixed, blocking the

water again, and it again begins to drain from behind the wall. In 3.7.7 the structure is fixed, and in 3.7.8

the structure has been completed.

Experiment 3 addresses the ability of the system to react to changes in environmental conditions. In the

floodwall application, this most naturally occurs in the form of changing water levels. In this experiment,

we simulate floodwall construction in a channel-like setting with channel width 5 and initial water height 3

(Figure 3.8). Construction takes place normally, and shortly after the structure is complete (406 time steps),

the water level is raised to 4. This causes the water to flow over the wall. The smart building blocks register

this change and designate new deposition points, and the wall is grown to once again fulfill its function.
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Figure 3.7: Experiment 2: Fixing a hole.

Figure 3.8: Experiment 3: changing water level.
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3.4.3 Scalability

In Experiment 4, we analyze the scalability of each of the algorithms developed in Section 3.3. Scalability

is a difficult concept to capture, especially in a single metric. For our purposes, scalability is defined as the

ability of our system to function at any arbitrarily small or large scale. In this report, we focus not on the

physical implementation of a system, which carries its own challenges at any scale. Instead, we aim to make

the algorithmic aspect of our system scalable. Therefore, we consider scale in the number of building blocks,

but not the size of building blocks; algorithmically, our system is block-size agnostic.

Our system is well-characterized in small scales, because this is where most testing and experimentation

takes place. With the following experiment, we aim to characterize the system at arbitrarily large scales

by investigating the relationships between the size of the structure being built, and a number of scalability

metrics.

Metrics:

We use the following metrics to characterize the scalability of the system:

1. Wall Surface Area: water height × channel width, the wall surface area is a measure of structure size.

It is an indicator of the minimum wall cross section that will hold back the water.

2. Number of Blocks: the number of smart blocks that are in the structure is the most representative

metric for structure size.

3. Number of Time Steps: the measure of how long it takes the system to complete the structure. In

one time step, the actuator can move one unit and the blocks can communicate to their immediate

neighbors.

4. Average Number of Block to Actuator Messages per Time Step: The number of messages the actuator

robot must handle per time step. In our paper, we consider a message to be a single integer.

5. Average Number of Block to Block Messages per Block per Time Step: The number of messages each

block must handle per time step. Again, a message is a single integer.

These metrics for scalability come partially from [28], which uses time, number of block to actuator messages,

and number of block to block messages as metrics.

Results:

To investigate the relationship between the metrics for size of the structure and the metrics for the cost of

completion of the structure (time and number of messages), we ran the simulation repeatedly, varying the
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Figure 3.9: Plot of the number of time steps taken vs. the wall surface area of the structure, for each of
the four algorithms.

width of the channel inside which the floodwall is built, and the height of the water. We varied from a width

of 3 units and a water height of 2 units, to a width of 20 units and a water height of 9 units. In terms of

the number of blocks in the final structure, this range encompassed more than two orders of magnitude. We

found trend curves that encompassed these relationships and enabled us to extrapolate further. Figures 3.9,

3.10, 3.11, and 3.12 show the results of these experiments, and their trend line equations.

Figure 3.9 shows the relationship between the wall surface area of the final structure and the number of

time steps taken. This relationship depicts how quickly each algorithm is able to complete the construction

task, which is correlated to the shape of the final structure: algorithms which build smaller structures (e.g.

fixed-width and template algorithms) will cover the same surface area in less time.

Figure 3.10 captures the relationship between structure size and time to build. Essentially, this character-

izes the additional building time required by the specific structure shape that emerges from each algorithm.

Figure 3.11 shows the number of messages the actuator robot must handle as a function of size of the

built structure (number of blocks). The y-axis metric is the number of messages the actuator robot received

per time step. This data was difficult to fit, especially for the hydrostatic algorithm (see Table 3.3 for fit

performance). The trend lines are hyperbolic.

Figure 3.12 demonstrates the scaling of each block’s message load with the size of the final structure.

The y-axis metric is the number of messages each block receives per time step, calculated by dividing the

total number of block-to-block messages by the total number of blocks, and again by the number of time
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Figure 3.10: Plot of the number of time steps taken vs. the number of blocks in the final structure for each
of the four algorithms.

Figure 3.11: Plot of the number of messages sent between each actuator robot and smart building blocks
per time step vs. the number of blocks in the final structure.
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Figure 3.12: Plot of the number of messages each smart block handles per time step vs. the number of
blocks in the final structure.

Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12
Template 0.9941 0.9995 0.8613 0.9589
Fixed-Width 0.9943 0.9993 0.8196 0.9851
Blind 0.9948 0.9993 0.3019 0.9698
Hydrostatic 0.9992 0.9983 0.0017 0.9739

Table 3.3: r2 values for the trend equations in Figures 3.9, 3.10, 3.11, and 3.12. Poor values are highlighted
in red.

steps. The trend lines for this data are hyperbolic.

3.5 Discussion

3.5.1 Adaptive Behavior

Experiment 1 shows successful adaptive behavior. We use the hydrostatic algorithm to build structures in

a variety of environments. We give the system the exact same input for every trial: the direction in which

to contain the water. We vary the channel width, water height, and the position in which the seed block

is placed. Changing these variables, we are not able to find a scenario in which the hydrostatic adaptive

algorithm does not complete a successful structure.

Note that the overall shape of the system varies according to the inputs: a higher water level (Figure

3.6.2,3.6.6) will result in a wider structure, as the blocks react to larger hydrostatic forces. A lower water

level (Figure 3.6.5) will result in a narrow cross section. This demonstrates the efficiency of the algorithm

32



at creating a robust structure: it does not build more than is necessary, because it is responding directly to

the environmental parameters captured by the sensors.

Additionally, the system is agnostic to where the seed block is placed. The exact coordinates of seed

block placement are shown in Table 3.2, but the qualitative effects can be seen in the gradients in Figure

3.6. The yellow, which represents high gradient values, is nearer the seed location, because these areas are

built first. The darker colors are the last blocks that are placed. In the first, second third, and sixth image,

the robot builds the rear right portion of the structure last. In the fifth image, the right side of the structure

is the last to be built, and in the fourth image, the back left portion of the structure is the last to be built.

The final state of the system is not impacted by the order of building that results from different seed block

placements.

As previously mentioned, the current state of the art in the literature, as presented in [22], [28] is

represented by the template algorithm. The template algorithm will fail to adapt to different environmental

conditions: the template has to be designed for each environment, and will not be effective in an environment

for which it is not designed. If the water level in an environment is higher than in the environment for which

the template is designed, the wall will overflow. If the water level is much lower, the template will be far too

large, resulting in unnecessary expense.

Compared to the fixed-width algorithm, the hydrostatic algorithm results in a more adaptive system.

Again, the width must be known for each specific environment. If water levels are smaller than expected,

the fixed-width algorithm will be very short and fat. If they are higher than expected, it will be dangerously

thin (Figure 3.13).

3.5.2 Damage and Environment Response

In Experiments 2 and 3, we analyzed how the system responded to damage that was inflicted on the structure,

and to changes in the water height during construction.

Damage Repair:

Figure 3.7 shows Experiment 2, where a hole is created instantaneously in the structure, and the system

must recognize the hole and repair it. This capability is possible in other systems, including those that do

not use smart building blocks. The key advantage of our system is the speed of repair. Because the building

blocks are able to recognize the damage after one timestep, and propagate this information at the speed of

block-to-block communication, the damage can be repaired orders of magnitude faster. This speed increase

for construction, though not specifically for repairing, was shown in [23].
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In our experiment, the damage was recognized in one timestep, and the gradient was propagated to the

robot position in 12 timesteps.

Note that the shape of the completed structure in Figure 3.7 is not the typical shape we expect from the

hydrostatic algorithm: it is wider than the staircase shape normally seen. If an internal block in a given

y-axis (front to back) row is placed before the external block in this row, the block may request additional

deposition points that violate the hydrostatic width constraint. These extra blocks will cause an additional

x-axis row (across the channel) to be built. This behavior results in over-compensation for damage, a side-

affect that could be eliminated with a simple mechanism to stop irrelevant deposition requests. However, it

is advantageous to over-repair damaged areas: it is reinforcement against further damage. Therefore, we do

not remove the behavior.

All three of the other algorithms are capable of fixing damage of this type in the same manner and with

the same efficiency. Under each of the four algorithms, the system is robust to many different types of

damage. The system will fix a simple hole, as shown in Experiment 2. The system can also handle holes

that are only on the front or back surface of the structure, and which don’t penetrate the entire structure.

The system can handle large scale disturbances, like most of the building blocks being washed away, perhaps

separating a group of already placed building blocks from the seed and depot entirely. The system will

continue building and complete the structure.

Environment Response:

In Experiment 3, we build a structure using the hydrostatic algorithm, and raise the water level after

construction is completed. This causes the floodwall to overflow, spilling water back behind the wall. This

spurs more structure growth, with construction occurring first atop the wall, and then back behind to further

reinforce. This results in a final structure that again satisfies the function of water containment.

The hydrostatic algorithm guarantees stability of the floodwall structure even as environmental factors

change by making use of hydrostatic force measurements to determine the width of the wall.

The blind algorithm (Algorithm 2) is equally as adaptive to this type of environmental change, but its

structure may not be as robust: because it is not responding directly to the forces on the structure - it only

builds until water drains from behind it - it may not make a structurally sound shape. For example, in

Figure 3.5, the width at the far end of the structure is only two building blocks. This is relatively small for

a water height of eight units.

The template algorithm is not adaptive to this type of environment change at all. If the water height

increases and it overflows, it will not detect anything wrong, and the system will not change. The same occurs

if the channel were to widen: water would flow by the sides of the structure, but the template algorithm
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Figure 3.13: The structure resulting from the fixed-width algorithm with a specified width of two, for low
floodwater circumstances. The water height was then raised to 12 to simulate unexpectedly high flooding.

would not register this change.

The fixed-width algorithm is adaptive to this type of environmental change, but like the blind algorithm,

it does not guarantee a stable structure. For example, if the water height is expected to be small, and

a width of two units is chosen, the structure will remain two units wide regardless of other environmental

changes. If the water height were to increase drastically, the resulting structure (shown in Figure 3.13) would

be absurdly tall and skinny, and clearly not stable.

3.5.3 Scalability

Scalability is an important and difficult to characterize metric for a system such as this. In modular robotics,

greater benefits are realized as scale of the individual module decreases, and the number of modules in the

system increases. This is the same for our system: increase in the number of building blocks results in

structures with higher fidelity, smaller cracks, and more redundancy.

Our first measure of scalability is how the structure build time scales with the surface area of water that

the structure must contain. As shown in Figure 3.9, all four algorithms scale quadratically with surface area.

The relationship between these two metrics reflects the shape that emerges from each algorithm. The

blind algorithm scales the worst, because it makes the largest structure for a given water height and width.

The results from the template and fixed-width algorithms are similar; in this experiment, they were both

implemented with width = max(floor(waterheight2 ), 2), and so very similar structures resulted from each.

Their scaling with surface area will depend largely on the widths chosen. The hydrostatic algorithm falls

35



between: it builds a larger and more robust structure than the template and fixed-width algorithms for most

cases, but a smaller structure than the blind algorithm.

Quadratic performance (with the square term less than 1) is reasonable performance for construction of

structures that are roughly cubic in shape. If faster performance is necessary, a greater number of actuator

robots could be used.

In Figure 3.10, we directly compare the structure size with the time to completion of the structure. In

our system architecture, where an actuator robot must travel the distance from the depot to the deposition

point and return every time a block is placed, we expect this relationship to be slightly worse than linear,

due to the travel time of the robot.

This expectation is accurate. Each of the four algorithms scales quadratically in these two metrics with

very small x2 coefficients, between 0.0066 and 0.015. This scaling can be further improved, again, by using

more actuator robots.

The difference between each of the four algorithms in this relationship is small, and a function of the

structure shape. The blind algorithm scales best in these metrics, as the robot is always building as close

to the depot as possible. The hydrostatic algorithm scales worst, as its shape is distributed such that the

robot must travel farther throughout construction.

Near-linear scaling is expected and acceptable performance in this metric. In a system where a single

agent builds a structure, better than linear scaling would indicate that each block is placed faster as structure

size increases. But our actuator robot can only carry one block, and as the structure size grows, the distance

the robot must travel increases: linear scaling is the best case scenario for a single-robot implementation.

In Figure 3.11, we observe the scaling of the number of messages that each actuator robot must handle

per timestep with the number of building blocks. This data is difficult to fit meaningfully; in Table 3.3, the

poor r2 values are highlighted in red. However, hyperbolic curves were able to best characterize the data,

with the exception of the hydrostatic algorithm, which was best fit as a constant. These trend equations,

which were generated by a numerical fitting algorithm in the Matlab curvefitting toolbox, vary widely, but

we note that large differences in coefficients only result in significant changes in the curve as the number of

blocks increase to the order of 107.

The important trend to note in this data is that for every algorithm, the actuator robot message load

is near constant as number of building blocks increases. Even the worst-scaling algorithm, the fixed-width

algorithm, scales extremely well: the number of messages that each robot must handle per time step does

not exceed 1 until the number of blocks is ≈ 1027. Since each robot should be capable of handling many

more than one message per time step, this is a highly favorable result.

In Figure 3.12, we look at how the number of messages that each block receives per time step scales with
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the number of blocks in the structure. Similar to the trends in 3.11, the data is best characterized with

hyperbolic curves. These decreasing hyperbolic curves fit the data with r2 > 0.97 (Table 3.3), and indicate

very favorable scaling of block message load. The decreasing curves indicate that as the number of blocks

in the system increases, each block must handle fewer messages per time step. As above, there is large

variation in the coefficients of the trend lines, but this does not significantly affect the curves in the range

of block number that we analyzed.

Based on the results from these scaling analyses, we conclude that the system is highly scalable: as size of

the structure increases, the time of construction increases slightly worse than linearly, and the message load

that the actuator robots and the smart building blocks must handle per time step decreases. Therefore, the

scale of the system is limited by the worse-than-linear scaling with time. This is expected with a system in

which the construction materials must be transported to deposition points and installed. This limiting factor

can be mitigated by using multiple construction robots. This merits further investigation, but we expect

that as the number of actuator robots approaches the number of blocks in the structure, better-than-linear

performance could be achieved in time.

3.6 Conclusion

We presented a system architecture that successfully builds a floodwall with smart building blocks, and four

sets of local rules that each result in successful emergent structures.

In Experiment 1, we showed that our system can adapt to varied environments, a novel achievement

for smart building block based systems. In Experiment 2, we demonstrated that our system can rapidly

repair itself when damaged. In Experiment 3, we showed another novel capability for a smart building block

system: response to changing environmental factors. Finally, in Experiment 4, we showed that the system

is scalable in terms of the message load for robots and building blocks, and near-linear in time.

3.7 Future Work

The immediate extensions of this work are as follows:

1. More thorough comparison with modular robot systems and passive building block systems, in terms

of construction speed and capability.

2. Provability of construction: [28],[5],[7] prove that their system will always be capable of building a

specific class of structures. We would like to prove this for our system. The difficulty of this proof
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is that we use sets of local rules, and so do not have a clear definition of our structure’s final shape.

Further, we would like to prove that the structure is capable of repairing any arbitrary damage, in

terms of blocks removed.

3. Implementing sets of local rules that make use of more direct measures of structure stability, such as

strain sensor data.

Longer-term, interesting investigations include:

1. Investigation and quantification of robustness of the system to sensor failure and robot failure, including

robustness to noise in sensor data, communications, and Byzantine fault tolerance.

2. Implementation of multiple actuator robots working together to build the system, and an investigation

of how this impacts the scalability of the system in time and communications.

3. Investigation of a hybrid system of smart building blocks and passive, inert blocks: how many building

blocks do we need to fully embody the system, and achieve adequately responsive behavior?

The long-term goal of this research is to enable more complex construction in unstructured environments.

To do this, we envision a system that makes use of a variety of local rule sets as construction pieces, and

makes templates composed of these construction pieces. For example, there might be a local rule set for a

wall, for a pillar, and for a roof. These could be combined to make a roofed structure (Figure 3.14).

Combining sets of local rules in this way would allow adaptive construction, self-repairing, and scalability

of each individual section, enabling complex construction in unstructured environments. It would also allow

simple specification of more complex structures.
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Figure 3.14: An imagined template of local rule sets, which would result in the construction of a roofed
structure in an adaptive manner.
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